17 research outputs found

    Methods for genetic manipulation of Burkholderia gladioli pathovar cocovenenans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Burkholderia gladioli </it>pathovar <it>cocovenenans </it>(BGC) is responsible for sporadic food-poisoning outbreaks with high morbidity and mortality in Asian countries. Little is known about the regulation of virulence factor and toxin production in BGC, and studies in this bacterium have been hampered by lack of genetic tools.</p> <p>Findings</p> <p>Establishment of a comprehensive antibiotic susceptibility profile showed that BGC strain ATCC33664 is susceptible to a number of antibiotics including aminoglycosides, carbapenems, fluoroquinolones, tetracyclines and trimethoprim. In this study, we established that gentamicin, kanamycin and trimethoprim are good selection markers for use in BGC. Using a 10 min method for preparation of electrocompetent cells, the bacterium could be transformed by electroporation at high frequencies with replicative plasmids containing the pRO1600-derived origin of replication. These plasmids exhibited a copy number of > 100 in BGC. When co-conjugated with a transposase expressing helper plasmid, mini-Tn<it>7 </it>vectors inserted site- and orientation-specifically at a single <it>glmS</it>-associated insertion site in the BGC genome. Lastly, a <it>Himar1 </it>transposon was used for random transposon mutagenesis of BGC.</p> <p>Conclusions</p> <p>A series of genetic tools previously developed for other Gram-negative bacteria was adapted for use in BGC. These tools now facilitate genetic studies of this pathogen and allow establishment of toxin biosynthetic pathways and their genetic regulation.</p

    Characterization of Ceftazidime Resistance Mechanisms in Clinical Isolates of Burkholderia pseudomallei from Australia

    Get PDF
    Burkholderia pseudomallei is a Gram-negative bacterium that causes the serious human disease, melioidosis. There is no vaccine against melioidosis and it can be fatal if not treated with a specific antibiotic regimen, which typically includes the third-generation cephalosporin, ceftazidime (CAZ). There have been several resistance mechanisms described for B. pseudomallei, of which the best described are amino acid changes that alter substrate specificity in the highly conserved class A β-lactamase, PenA. In the current study, we sequenced penA from isolates sequentially derived from two melioidosis patients with wild-type (1.5 µg/mL) and, subsequently, resistant (16 or ≥256 µg/mL) CAZ phenotypes. We identified two single-nucleotide polymorphisms (SNPs) that directly increased CAZ hydrolysis. One SNP caused an amino acid substitution (C69Y) near the active site of PenA, whereas a second novel SNP was found within the penA promoter region. In both instances, the CAZ resistance phenotype corresponded directly with the SNP genotype. Interestingly, these SNPs appeared after infection and under selection from CAZ chemotherapy. Through heterologous cloning and expression, and subsequent allelic exchange in the native bacterium, we confirmed the role of penA in generating both low-level and high-level CAZ resistance in these clinical isolates. Similar to previous studies, the amino acid substitution altered substrate specificity to other β-lactams, suggesting a potential fitness cost associated with this mutation, a finding that could be exploited to improve therapeutic outcomes in patients harboring CAZ resistant B. pseudomallei. Our study is the first to functionally characterize CAZ resistance in clinical isolates of B. pseudomallei and to provide proven and clinically relevant signatures for monitoring the development of antibiotic resistance in this important pathogen

    Identification of genes required for soil survival in Burkholderia thailandensis by transposon-directed insertion site sequencing.

    Get PDF
    Transposon-directed insertion site sequencing was used to identify genes required by Burkholderia thailandensis to survive in plant/soil microcosms. A total of 1,153 genetic loci fulfilled the criteria as being likely to encode survival characteristics. Of these, 203 (17.6 %) were associated with uptake and transport systems; 463 loci (40.1 %) coded for enzymatic properties, 99 of these (21.4 %) had reduction/oxidation functions; 117 (10.1 %) were gene regulation or sensory loci; 61 (5.3 %) encoded structural proteins found in the cell envelope or with enzymatic activities related to it, distinct from these, 46 (4.0 %) were involved in chemotaxis and flagellum, or pilus synthesis; 39 (3.4 %) were transposase enzymes or were bacteriophage-derived; and 30 (2.6 %) were involved in the production of antibiotics or siderophores. Two hundred and twenty genes (19.1 %) encoded hypothetical proteins or those of unknown function. Given the importance of motility and pilus formation in microcosm persistence the nature of the colonization of the rhizosphere was examined by confocal microscopy. Wild type B. thailandensis expressing red fluorescent protein was inoculated into microcosms. Even though the roots had been washed, the bacteria were still present but they were motile with no attachment having taken place, perhaps being retained in a biofilm

    Evolution of Burkholderia pseudomallei in Recurrent Melioidosis

    Get PDF
    Burkholderia pseudomallei, the etiologic agent of human melioidosis, is capable of causing severe acute infection with overwhelming septicemia leading to death. A high rate of recurrent disease occurs in adult patients, most often due to recrudescence of the initial infecting strain. Pathogen persistence and evolution during such relapsing infections are not well understood. Bacterial cells present in the primary inoculum and in late infections may differ greatly, as has been observed in chronic disease, or they may be genetically similar. To test these alternative models, we conducted whole-genome comparisons of clonal primary and relapse B. pseudomallei isolates recovered six months to six years apart from four adult Thai patients. We found differences within each of the four pairs, and some, including a 330 Kb deletion, affected substantial portions of the genome. Many of the changes were associated with increased antibiotic resistance. We also found evidence of positive selection for deleterious mutations in a TetR family transcriptional regulator from a set of 107 additional B. pseudomallei strains. As part of the study, we sequenced to base-pair accuracy the genome of B. pseudomallei strain 1026b, the model used for genetic studies of B. pseudomallei pathogenesis and antibiotic resistance. Our findings provide new insights into pathogen evolution during long-term infections and have important implications for the development of intervention strategies to combat recurrent melioidosis

    An improved selective culture medium enhances the isolation of Burkholderia pseudomallei from contaminated specimens.

    Get PDF
    Burkholderia pseudomallei is a Gram-negative environmental bacterium found in tropical climates that causes melioidosis. Culture remains the diagnostic gold standard, but isolation of B. pseudomallei from heavily contaminated sites, such as fecal specimens, can be difficult. We recently reported that B. pseudomallei is capable of infecting the gastrointestinal tract of mice and suggested that the same may be true in humans. Thus, there is a strong need for new culture techniques to allow for efficient detection of B. pseudomallei in fecal and other specimens. We found that the addition of norfloxacin, ampicillin, and polymyxin B to Ashdown's medium (NAP-A) resulted in increased specificity without affecting the growth of 25 B. pseudomallei strains. Furthermore, recovery of B. pseudomallei from human clinical specimens was not affected by the three additional antibiotics. Therefore, we conclude that NAP-A medium provides a new tool for more sensitive isolation of B. pseudomallei from heavily contaminated sites
    corecore